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Introduction 
Proton MRS is by far the most widely used in vivo spectroscopy technique in humans. This is 
due to the fact that standard MRI hardware components are used, making 1H MRS widely 
available, that the concentrations of protons are high, and that the MR sensitivity of protons is 
higher then the sensitivity of other nuclei.  On the other hand proton MRS is sometimes limited 
by its lack of specificity. For example, elevated total choline in 1H MRS could be due to an 
increase of phosphocholine (PC), glycerophosphocholine (GPC), or free choline or any 
combination.  Cr comprises both free creatine and phosphocreatine. 1H MRS is also 
compromised by low spectral resolution and complex pattern of some metabolites due to 
homonuclear J-coupling.  Finally, important metabolites such as ATP are not observed with 1H 
MRS. 

Challenges for 13C and 31P MRS 
Apart from identifying relevant medical and 
biological questions, there are significant 
challenges for both 13C and 31P MRS.  Both 
methods compete with MRI, the probably most 
powerful diagnostic imaging tool, for valuable 
time on expensive equipment. In addition, 
multinuclear spectroscopy of disease is 
challenging because of the need for the 
availability of these tools on clinical MR 
scanners. This requires additional hardware, 
including dual-tuned RF coils and proton-
decouplinga capabilities which are not only 
expensive but sometimes, even if funds are available, hard to get installed on a clinical system. 
Both methods are also compromised by long acquisition times/low spatial resolution scans (due 
to low sensitivity)b. Finally, in particular for 13C MRS, expertise with data processing which 
includes complex mathematical modeling is needed. 
 
Not surprisingly multinuclear MRS finds itself in the difficult situation illustrated in Fig. 1. 
However, as discussed below, both modalities offer unique opportunities to examine tissue in 
vivo.  

                                                 
aProton-decoupling and the nuclear Overhauser effect (NOE) are essential in particular for direct detected 13C MRS 
but also improve 31P MRS considerably.  It is not advised to attempt 13C MRS without decoupling/NOE.  Even the 
simplest application, such as measuring the lipid profile of a human leg would be quite demanding without the 
improved SNR and resolution facilitated by decoupling and NOE. 
bAn exception is 31P MRS of skeletal muscle (e.g. leg). Due to the proximity of a surface coil to the leg muscle 
spectra of excellent quality can be obtained within a few seconds. 



13C MRS 
Only a few groups have attempted 13C MRS in vivo.  The few studies undertaken illustrate the 
great promise of in vivo 13C MRS and interest in 13C MRS has grown considerably in recent 
years.  A recent issue of NMR in Biomedicine (1) was exclusively dedicated to the application of 

13C MRS to study biological systems. The potential of 13C arises from its biggest handicap:  Low 
natural abundance of 13C (13C ≈1.1%, 12C ≈ 98.9%) and the compromised sensitivity (≈ 1/50 of 
1H) renders 13C MR spectroscopy in vivo very difficulty due to the inherently very low signal-to-
noise ratio (SNR).  This low natural abundance, on the other hand, is the key to new, exciting 
applications of in vivo MRS: 

13C MRS enables the investigation of metabolic pathways and the measurement of flux 
rates in vivo in humans after 13C enriched substrate infusion. 

Fig. 2 illustrates the 
steps involved for a 
typical 13C MRS 
study after substrate 
infusion. In vivo 13C 
studies of humans 
require large 
amounts of 13C 
enriched substrates 
(expensive!), are 
technically and 
logistically 
challenging, and 
thus need to be 
planned carefully 
(2-4).  Depending 
on the biological 
question asked, it 
needs to be decided 
what substrate 
should be infused 
for how long and in 
what fashion.  For 
some applications 
oral administration 
may be appropriate 
(5-7) which would 
simplify the 
procedure 
considerably because one intervenous (i.v.) infusion line could be eliminated. 

FIG. 2. (A) Dynamic 13C MRS involves the sequential acquisition of 13C spectra 
(typically every 2 – 10 minutes) after substrate infusion to monitor 13C label 
accumulation.  (B) The next step is the quantitation of spectra to generate time 
courses of 13C concentration (or 13C enrichment). (C+D) A set of differential 
equations is derived from the metabolic model.  (E) By iteratively varying flux 
parameters (and pool concentrations) of the mathematical model to optimize the fit 
with experimental data, flux rates (and pool concentrations) can be determined. 

 
13C enriched glucose has been used by several groups to study brain metabolism in vivo. 

Glucose is the principal substrate for energy metabolism for both neurons and glia cells in the 
brain and facilitates the de novo synthesis of many neurochemicals. Glucose is the first choice as 
substrate because of its rapid oxidation and the fast appearance of 13C label in its metabolites and 



its non-toxicity even at extremely high 
concentrations. Intravenously infused or 
orally administered glucose passes the 
blood-brain barrier and is readily 
metabolized through glycolysis and 
complete oxidation in the tricarboxylic 
acid (TCA)-cycle. 13C enrichment of 
individual carbon atoms of glutamate 
(Glu), glutamine (Gln), aspartate (Asp), 
N-acetylaspartate (NAA), γ-amino 
butyric acid (GABA), lactate (Lac), 
alanine (Ala), and bicarbonate (HCO3-) 
follows and the in vivo rates of several 
of the principal bioenergetic pathways of 
the brain have been determined (2,3,8-
11). 
Applications 

Potential clinical applications 
include diseases associated with 
physiological and pathological 
alterations in cerebral glucose 
consumption. An example is hepatic 
encephalopathy where cerebral glucose 
metabolism is altered, in response to 
hyperammonemia (12,13).  Indeed, 
striking abnormalities in glucose 
metabolism and glutamate and 
glutamine label accumulation were 
observed in patients with chronic hepatic 
encephalopathy which appeared to be 
more pronounced with increasing 
severity of the disease (Fig. 3) (11). 
Inherited mitochondrial diseases of the 
TCA-cycle or the electron transport chain also affect the overall rate of glucose oxidative 
metabolism in the brain and could be a target for 13C MRS with glucose infusion. In addition to 
being the primary fuel of respiration, glucose is the source of α-glycerophosphate which is 
essential for biosynthesis of myelin phospholipids. 13C MRS after 13C enriched glucose infusion 
could therefore possibly contribute to understanding disorders in the developing brain including 
leukodystrophies and peroxisomal diseases which present as myelination defects on MRI. The 
information obtained from following the fate of 13C labeled glucose goes beyond that of 
providing a rate for energy production.  A tight coupling between cerebral glucose metabolism 
and glutamate neurotransmitter flux in humans has been proposed by Magistretti et al. (14).  
Aspartate, (a neurotransmitter?), can be studied in vivo in humans by its 13C label accumulation.  
The role of NAA in mammalian brain, a neuronal/axonal marker which is central for its 
diagnostic power in 1H MRS, is incompletely understood. NAA synthesis can be measured with 

13C MRS after glucose infusion in a clinical setting (5). 

FIG. 3: a: Natural-abundance 13C MRS of a control and 
severe chronic hepatic encephalopathy (CHE). Myo-inositol 
(mI) was depleted, glutamine C2 resonance was strikingly 
elevated (threefold) and glutamate was modestly reduced (
20%). b: Difference spectra from a control and four patients 
representing increasing stages of CHE, calculated from 
acquisitions 60-100 min after start of infusion. A progressive 
reduction of glutamate C2 labeling was observed. c: 13C 
spectra from the carbonyl region. At 60-100 min after start 
of infusion, 13C incorporation into bicarbonate (the end 
product of complete glucose oxidation) is apparent in 
normal brain.  In a severe case of grade III-IV CHE, 
bicarbonate enrichment was undetectable. 



13C labeled acetate: 13C MRS studies employing 
13C enriched glucose as the substrate reflect 
predominantly the metabolism of neurons + glia.  
Acetate (Ac), an alternative fuel metabolized to 
acetyl-CoA only in the glial compartment (15) has 
been used in combination with 13C glucose to 
separate glial from neuronal metabolism in cell 
preparations, tissue slices and in vivo in experimental 
animals (16,17). 13C MRS after 13C enriched acetate 
infusion therefore has the potential to investigate 
normal human glial metabolism and to elucidate brain 
diseases which originate in glia using the same MR 
technique as for glucose. Recent studies showed that 
the rate of Ac oxidation in human brain is ≈ 20% of 
the total neuronal/glial TCA-cycle rate in fasted 
human brain (18,19).  In patients with epileptic 
seizures on ketogenic diet abnormal label 
accumulation in glutamate and glutamine was 
observed (20) (Fig. 4).  These results are consistent 
with altered glutamate-glutamine neutrotransmitter 
cycling and adaptation to ketogenic diet with up-
regulation of acetate oxidation relative to glucose 
oxidation. 

FIG. 4: Impact of ketogenic diet (KD) on 
astroglial acetate oxidation 
(A) 13C difference spectra obtained from 
ketogenic diet patients (average of three) and 
(B) controls after infusion of [1-13C] acetate. 
 13C label incorporation into Glu C5 and Gln 
C5 was more pronounced in patients.  In 
addition, Glu C1 and Gln C1 enrichment was 
more prominent, whereas equivalent 
production of HCO3 was observed. 

 
31P MRS 
Spectroscopy of living tissue started with 31P MRS 
and it was not until technical advances in the early 
1990s allowed efficient water suppression and 
reduction of eddy current artifacts that proton MRS 
become the dominant tool for in vivo spectroscopy. 
31P MRS allows the detection of phosphocreatine 
(PCr), ATP, and inorganic phosphate (Pi), and the 
measurement of pH from the chemical shift 
difference between PCr and Pi. ATP is the central 
provider of energy for all energy demanding 
processes in cells via the reaction: 
 
ATP + H2O→ ADP + Pi + energy [1] 
 
PCr functions as a battery and is used to 
maintain/replenish ATP pools via creatine kinase 
when demand exceeds mitochondrial ATP production 
during strenuous exercise: FIG. 5: 31P MRS of skeletal muscle (top).  

Depletion and recovery of the muscle PCr 
levels during and after exercise (bottom).  

PCr + ADP + H+ → ATP + Cr [2] 
 



Finally, at rest ATP is restored via oxidative 
phosphorylation: 
 
ADP + Pi + energy → ATP + H2O. [3] 
 
ATP can then be used to replenish PCr via 
creatine kinase: 
 
PCr + ADP + H+ ← ATP + Cr 
 
While creatine kinase requires the uptake of one 
proton, anaerobic glycolysis generates a proton 
from lactate acid. From the simultaneous 
measurements of pH and PCr important 
information about glycolysis and creatine kinase 
can be obtained. PCr/Pi is an indicator for 
adequate mitochondrial oxidative 
phosphorylation. The resting 31P spectrum of 
muscle, even in disease, is often unremarkable. 
Some form of exercise, while continuously 
scanning, is required to study energy metabolism.  
In particular skeletal muscle is readily accessible 
and can be studied rested and during exercise with 
a time resolution of a few seconds (Fig. 5). This 
makes 31P MRS a superb tool to study energy 
metabolism and mitochondrial function non-
invasively in skeletal muscle and to diagnose and 
quantify the extent of metabolic myopathies. 
 
31P MRS of the diseased brain: A wide range of 
disease processes that include birth asphyxia, 
dementias, stroke, multiple sclerosis, epilepsy, 
mental disorders, hepatic encephalopathy, and 
tumors (21-39) were studied. The 31P spectrum of brain tissue is more complex than spectra of 
muscle. In addition to ATP, PCr, and Pi, prominent phosphomonoester (PME) and 
phosphodiester (PDE) peaks are observed. Proton-decoupling is required to separate the PMEs 
phosphoethanolamine (PE), phosphocholine (PC) and the PDEs glycerophosphoethanolamine 
(GPE), glycerophosphocholine (GPC) from each other and from underlying broad signal from 
phospholipids (Fig. 6). These molecules are involved in myelin biosynthesis by methyl group 
metabolism and lipid transport and are components of a number of important biological 
compounds including the membrane phospholipids lecithin, sphingomyelin, and plasmalogen 
(40).  Thus in the brain, 31P MRS may provide useful information about (i) energy metabolism 
while it can be used at the same time to study diseases with (ii) abnormal membrane 
metabolism. In particular GPC and (possibly GPE) has been identified as a cerebral osmolyte 
(41,42) and 31P MRS can be used to investigate disease which are believed to be associated with 
(iii) disturbances of cerebral osmoregulation. An example of the use of combined 1H and 
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FIG. 6: 31P (upper trace) and proton decoupled 
31P spectra of (normal) brain tissue. Proton 
decoupling is required to resolve peaks from PE, 
PC and GPE, GPC. By saturation of the protons 
a signal enhancement due to the Nuclear 
Overhauser Effect (NOE) is observed. 



proton decoupled 31P MRS to monitor the impact of treatment with hydrocortisone and 
testosterone of a subject with hypopituitarism is shown in Fig. 7. 
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FIG.7: Sequential 1H and proton 
decoupled 31P MRS in a 60 years old 
male with hyponatremia (NA = 113 
mEq/l) due to hypopituitarism before 
and after treatment with hydrocortisone 
and testosterone. Before treatment, total 
choline was low (measured with 1H 
MRS) and GPC as well as GPE were 
depleted.  11 days after treatment total 
choline and GPC and GPE were slightly 
above normal. 1 ½ years later total 
choline and GPC and GPE were within 
normal.  Myo-inositol (mI) appeared 
prominent in the final 1H spectrum.  The 
significance and cause of elevated mI is 
uncertain. (PCr peak truncated). 
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